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A Utility-Based Distributed Maximum Lifetime
Routing Algorithm for Wireless Networks
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Abstract—Energy-efficient routing is a critical problem in mul-
tihop wireless networks due to the severe power constraint of
wireless nodes. Despite its importance and many research efforts
toward it, a distributed routing algorithm that maximizes net-
work lifetime is still missing. To address this problem, this paper
proposes a novel utility-based nonlinear optimization formulation
to the maximum lifetime routing problem. Based on this formu-
lation, a fully distributed localized routing algorithm is further
presented, which is proved to converge at the optimal point, where
the network lifetime is maximized. Solid theoretical analysis and
simulation results are presented to validate the proposed solution.

Index Terms—Energy, non-linear optimization, utility, wireless
network.

I. INTRODUCTION

MULTIHOP wireless networks can be formed by wireless
nodes with no preexisting and fixed infrastructures.

In order to provide communication throughout the network,
wireless nodes cooperate to handle network functions, such as
packet routing. One example of a multihop wireless network
is a sensor network, which can be readily deployed in diverse
environments, such as health care, military, and disaster detec-
tion, to collect and process useful information in an autono-
mous manner.

One important issue in wireless networks is the energy
constraint—wireless nodes carry limited and irreplaceable
power supply. Moreover, radio communication consumes a
large fraction of this supply. Such observations pose critical
demand to design energy-efficient packet routing algorithms.
In order to scale to larger networks, such algorithms need to
be localized. The key design challenge is to derive the desired
global system properties in terms of energy efficiency from the
localized algorithms.

In existing works, the problem of designing energy-efficient
routing algorithms has been extensively studied in both general
multihop wireless networks [1]–[5], and the particular backdrop
of sensor networks [6]–[10]. Various goals may be achieved by
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these energy-efficient routing algorithms, such as minimizing
energy consumption for end-to-end paths [4], [11]–[16] or
maximizing the lifetime of the whole network [1]–[3], [6], [17].
Here, we give a brief overview of these existing approaches
from an optimization theoretical viewpoint and highlight the
original contribution of this work in light of previous works.

A. Minimum Energy Routing: User Optimization

The minimum energy routing problem presents a “user op-
timization” problem. It tries to optimize the performance of
a single user (an end-to-end connection), minimizing its en-
ergy consumption. To solve this problem, the typical approach
[14], [15] is to use a shortest path algorithm in which the edge
cost is the power consumed to transmit a packet between two
nodes of this edge. Although effectively reducing the energy
consumption rate, this approach can cause unbalanced con-
sumption distribution, i.e., the nodes on the minimum-energy
path are quickly drained of energy, causing network partition
or malfunctioning. Some routing algorithms [4], [12] associate
a cost with the node of low energy reserve, but remain to be
heuristic solutions.

B. Maximum Lifetime Routing: System Optimization

The maximum network lifetime routing problem tries to
maximally prolong the duration in which the entire network
properly functions. It presents a “system optimization” prob-
lem, which is radically different from “user optimization.” To
achieve the goal of “system optimization,” global coordination
is required, which poses a significant challenge to the design of
a distributed routing algorithm. On the other hand, maximum
lifetime routing well addresses the power consumption balance
problem of the minimum energy routing, a more critical issue
of wireless networks.

1) Existing Approaches—Linear Optimization Formulation:
The inherent characteristic of the maximum lifetime routing
problem naturally leads to a linear optimization formulation
[1]–[3], [6], [17]. A combinatorial algorithm can then be
designed to solve this problem. In particular, the following
algorithms have been presented in the existing work.

Heuristic: Heuristic algorithms are presented in [2] and
[6]. Being heuristics, these algorithms lack solid theoretical
proof of their performance. For example, the algorithm in [2]
may have degraded worst case performance, and the algorithm
in [6] does not scale well to the network size in terms of run-
ning time.
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Centralized approximation algorithm: In [3], Chang and
Tassiulas adopt a classical linear optimization approach—the
Garg–Konemann [18] algorithm—for multicommodity flow
and provide a centralized combinatorial approximation solu-
tion. Being a centralized algorithm, it is hard to be deployed
on realistic wireless network environments.

Distributed combinatorial algorithm: In a recent work,
Sankar and Liu [1] adopt a distributed flow algorithm due
to Awerbuch and Leighton [19], [20]. Yet, the core of this
algorithm can only verify whether a traffic input can be satisfied
by a required network lifetime, and if so, how to route traffic.
To calculate the exact network lifetime, a bisection search is
needed. Thus, to deploy this algorithm to route packets online,
it will suffer from slow convergence and potential performance
fluctuation due to the bisection search.

2) Our Approach—Nonlinear Optimization: In this paper,
we aim at designing a fully distributed routing algorithm that
achieves the goal of maximizing network lifetime. Toward this
goal, we propose a utility-based nonlinear optimization formu-
lation of the maximum lifetime routing problem. The essential
idea of this formulation is based on the following observation.
Our goal is to maximize the lifetime of the node that has the
minimum lifetime among all nodes. If we regard lifetime as
a “resource,” then this goal can be regarded as to “allocate
lifetime” to each node so that the max–min fairness criterion
is satisfied. This “lifetime allocation” mechanism needs to be
achieved via routing and has to satisfy the traffic demand
constraint. From this view, we further adopt the concept of
“utility” that has been widely used in resource allocation in
economics as well as distributed computing. By defining an
appropriate utility function based on lifetime, the problem of
achieving the max–min lifetime allocation is converted into the
aggregated utility maximization problem.

Based on this formulation, the key to the distributed algo-
rithm is to consider the marginal utility at each node. We show
that the system achieves optimal routing when the marginal
utilities of all nodes are equal. Hence, the design philosophy
of a distributed routing algorithm is to let each node balance its
own marginal utility by iteratively adjusting traffic on different
routing paths. Such a design philosophy was first proposed
by Gallager [22] in his seminal work to minimize the overall
network delay through distributed routing. Gallager’s algorithm
was later improved by Bertsekas et al. [21] to speed up the
convergence speed. Although sharing the same design thought,
our problem has entirely different optimization goals with
different objective functions.

To summarize, despite the importance of the maximum
network lifetime problem and many research efforts toward
it, a fully distributed localized on-line routing algorithm is
still missing. Toward this goal, this paper makes the following
original contributions. First, we present a unique utility-based
nonlinear optimization formulation of the maximum lifetime
routing problem. Second, based on this formulation, we pro-
pose a fully distributed and localized routing algorithm with
solid theoretical analysis of its optimality. To the best of our
knowledge, this is the first localized maximum lifetime routing
algorithm. It is important to note that, although designed for
energy-efficient routing in wireless networks, the presented al-

gorithm can also be extended to other scenarios where a global
optimization goal needs to be achieved by distributed routing.

The rest of this paper is organized as follows. We model the
network in Section II and present the utility-based formulation
of the network lifetime maximization problem in Section III.
Sections IV and V present the optimality condition of the
solution and the distributed maximum network lifetime routing
algorithm and its analysis. Section VI shows the performance
study, Section VII presents related work, and Section VIII
concludes this paper. Due to space limitations, all the proofs
can be found in our technical report [23].

II. MODEL

We consider a multihop wireless network that consists of a
set of wireless nodes, represented as N = {1, 2, . . . , n}. Two
nodes that are within the transmission range of each other
can communicate directly and form a wireless link. Let L
be the set of wireless links, denoted as L = {(i, k)| a wire-
less link goes from i to k}. Each link (i, k) has a weight dik,
which is the distance between the antennas of nodes i and k.

To illustrate how traffic is routed in the network, we further
introduce the following definitions and notations.

• input traffic ri(j) ≥ 0: the traffic (in bits per second)
generating at node i and destined for node j;

• node flow ti(j): the total traffic at node i destined for node
j. ti(j) includes both ri(j) and the traffic from other nodes
that is routed through i to destination j;

• routing variable φik(j): the fraction of the node flow ti(j)
routed over link (i, k). This variable defines a routing
solution. It is obvious that

— φik(j) = 0, if (i, k) �∈ L, as no traffic can be routed
through a nonexistent link;

— φik(j) = 0, if i = j, because traffic that has reached
its destination is not sent back into the network;

— as node i must route its entire node flow ti(j)
through all outgoing links∑

k∈N
φik(j) = 1, ∀i, j ∈ N .

We illustrate the above concept in Fig. 1. In the figure,
the input traffic is r2(4) = 2 kb/s, r3(6) = 3 kb/s, and
r1(6) = 1 kb/s. The node flows are t2(4) = r2(4), t3(6) =
r3(6), t1(4) = 2 kb/s, t1(6) = 4 kb/s, t4(6) = 1 kb/s, and
t5(6) = 3 kb/s. The routing variables are as follows: φ21(4) =
φ31(6) = φ14(4) = φ46(6) = φ56(6) = 1, φ14(6) = 1/4, and
φ15(6) = 3/4.

One important constraint of traffic routing in a network is
flow conservation: the traffic into a node for a given destination
is equal to the traffic out of it for the same destination. This
constraint can be formally expressed as

ti(j) = ri(j) +
∑
l∈N

tl(j)φli(j), ∀i, j ∈ N . (1)

We can also understand the routing problem as a multicom-
modity problem, i.e., the flow to each destination node j is
regarded as a commodity j. Then, the above statement simply
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Fig. 1. Example network and traffic.

means that the amount of a commodity that enters and leaves a
node must be the same.

Now we present the energy model used in this paper. We
defineEi as the energy reserve at node i. Let pr

i (joules per /bit)
be the power consumption at node i, when it receives one unit
of data, and pt

ik (J/bit) be the power consumption when one unit
of data is sent from i over link (i, k). Based on the first-order
radio model, we have

pr
i =α (2)

pt
ik =α+ βdm

ik (3)

where α is a distance-independent constant that represents the
energy consumption to run the transmitter or receiver circuitry,
and β is the coefficient of the distance-dependent term that
represents the transmit amplifier. The exponentm is determined
from field measurements, which is typically a constant between
2 and 4.

The routing variables φik(j) ∀j and the node flow set
ti(j) ∀j jointly determine the traffic sent along a wireless link
(i, k). Further, ti(j) ∀j and the input traffic ri(j) ∀j jointly
determine the traffic received at node i. Thus, we have the
wireless node i’s power consumption rate pi in joules per
second as

pi =
∑
j∈N

[
ti(j)

∑
k∈N

pt
ikφik(j) + pr

i (ti(j) − ri(j))

]
. (4)

We summarize above notations into the following sets:

• input set: r = {ri(j)|i, j ∈ N};
• node flow set: t = {ti(j)|i, j ∈ N};
• routing variable set: φ = {φik(j)|i, j, k ∈ N};
• power consumption set: p = {pi|i ∈ N}.

Note that the relations among the input set and the node flow
set are constrained by flow conservation. We further have the
following lemma.

Lemma 1: Given the input set r and routing variable set φ,
the set in (1) has a unique solution for t. Each element ti(j) is
nonnegative and continuously differentiable as a function of r
and φ.

The detailed proofs of lemmas and theorems in this paper can
be found in the technical report.

III. PROBLEM FORMULATION

Maximum network lifetime routing tries to maximally pro-
long the duration in which the entire network properly func-
tions. Here we consider the network lifetime as the lifetime of
the wireless node who dies first.1 The problem of maximum
network lifetime routing asks the given traffic demand how to
route the traffic so that the network lifetime can be maximized.
Let Ti denote the lifetime of wireless node i, and T as the
lifetime of the wireless network, i.e., T = min{Ti, i ∈ N}. The
problem can be formulated as a linear optimization problem

maximize T

subject to piT ≤ Ei ∀i ∈ N .

Eq. (1) and Eq. (4) (5)

In this formulation, (5) comes from the definition of lifetime,
i.e., the energy consumption at any node i within the network
lifetime is no more than its energy reserve, i.e.,

piT ≤ piTi = Ei, ∀i ∈ N .

Equations (1) and (4) represent the flow conservation and the
power consumption rate, respectively. For a given network
layout (N ,L) and traffic input set r, one can acquire the
optimal routing solution φ to maximize T by solving the above
linear optimization problem via a centralized algorithm (e.g.,
[18]). The real challenge is how to solve this problem in a
distributed fashion.

To address this challenge, we propose a novel utility-based
nonlinear optimization formulation of the maximum lifetime
routing problem, which can lead to a fully distributed routing al-
gorithm. This formulation is inspired by the max–min resource
allocation problem in distributed computing and networking
areas. Max–min fairness means that for any user i, increasing
its resource share xi cannot be achieved without decreasing
the resource share of another user xj that satisfies xi ≥ xj .
Simply put, the max–min allocation mechanism maximizes the
resource share of the user who is allocated with the minimum
resource.

In the context of maximum life time routing, if we regard life-
time of a node as a certain “resource” of its own, then the goal
of maximizing network lifetime can be regarded as to “allocate
lifetime” to each node so that the max–min fairness criterion
is satisfied. This “lifetime allocation” mechanism needs to be
achieved via routing and has to satisfy the traffic input, flow
conservation, and power consumption constraints.

We further adopt the concept of “utility” that has been widely
used in the area of resource allocation. Defined on the resource
share of a user, utility usually represents the degree of satisfac-
tion of this user. It is shown in [25] and [26] that by defining an
appropriate utility function, the problem of achieving max–min
fairness can be converted into the problem of maximizing the

1We also note that there are other definitions of network lifetime, such
as α-lifetime [24], to which the presented formulation and algorithm can be
extended.
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aggregated utility (sum of utilities of all users). Thus, we define
the utility Ui of a node i as a function of its lifetime Ti as

Ui(Ti) =
T 1−γ

i

1 − γ
, γ → ∞ (6)

where Ti = Ei/pi and γ can be made arbitrarily large to
infinite. How to determine the value of γ and its impact will
be discussed in detail in Section VI. It is shown that [25], [26]
Ti, i ∈ N satisfy the max–min fair if and only if it solves the
aggregated utility maximization problem max

∑
i∈N Ui, with

Ui defined as in (6).
To this end, we reformulate the problem of maximum net-

work lifetime as to maximize the aggregate utility of all nodes
within the network, i.e.,

U : maximize U =
∑
i∈N

Ui

subject to piTi ≤ Ei ∀i ∈ N
Eq. (1) and Eq. (4)

.

IV. OPTIMALITY CONDITIONS

With the presented utility-based problem formulation, we
only need to seek a distributed algorithm that solves the prob-
lem U in order to achieve maximum lifetime routing. First, we
need to understand the optimality condition of such a solution.
From the nonlinear optimization theory [27], we consider the
first-order conditions in problem U. Note that the utility Ui is
a function of node lifetime Ti, which directly associates with
pi based on relation Ti = Ei/pi. Thus, we can write Ui(pi) as
a function of pi. Power consumption pi in turn depends on the
input set r and the routing variable set φ. Thus, we calculate
the partial derivatives of the aggregate utility U with respect to
the inputs r and the routing variables φ, respectively.

We first consider ∂U/∂ri(j), the marginal utility on node
i with respect to commodity j. Assume that there is a small
increment ε on the input traffic ri(j). Then the portion εφik(j)
from this new incoming traffic will flow over the wireless
link (i, k). This will cause an increment power consumption
εφik(j)pt

ik on node i in order to send out the incremented
traffic. And the consequent utility change of node i is2

εφik(j)pt
ikU

′
i(pi).

On the receiver side, this will cause an increment power
consumption εφik(j)pr

k on node k in order to receive the
incremented traffic. The consequent utility change of node k is

εφik(j)pr
kU

′
k(pk).

If node k is not the destination node, then the increment
εφik(j) of extra traffic at node k will cause the same utility
change onward as a result of the increment εφik(j) of input
traffic at node k. To first order this utility change will be

2To simplify the notation U ′
I(pi) = ∂U/∂pi.

εφik(j)∂U/∂rk(j). Summing over all adjacent nodes k, then,
we find that

∂U

∂ri(j)
=

∑
k∈N

φik(j)
[
pt

ikU
′
i(pi) + pr

kU
′
k(pk) +

∂U

∂rk(j)

]

=
∑
k∈N

φik(j)
[
U ′

ik +
∂U

∂rk(j)

]

=
∑
k∈N

φik(j)δik(j) (7)

where U ′
ik = pt

ikU
′
i(pi) + pr

kU
′
k(pk) is called the marginal util-

ity on link (i, k), and δik(j) = U ′
ik + ∂U/∂rk(j) is called the

marginal utility of link (i, k) with respect to commodity j.
Equation (7) asserts that the marginal utility of a node is the

convex sum of the marginal utilities of its outgoing links with
respect to the same commodity. By the definition of φ, we can
see that ∂U/∂rj(j) = 0, since φjk(j) = 0, i.e., no traffic of
commodity j needs to be routed anymore once it arrives at the
destination.

Next we consider ∂U/∂φik(j). An increment ε in φik(j)
causes an increment εti(j) in the portion of ti(j) flowing on
link (i, k). If k �= j, this causes an addition εti(j) to the traffic
at k destined for j. Thus, for (i, k) ∈ L, i �= j

∂U

∂φik(j)
= ti(j)

[
pt

ikU
′
i(pi) + pr

kU
′
k(pk) +

∂U

∂rk(j)

]

= ti(j)δik(j). (8)

To summarize above discussions, we have the following
theorem.

Theorem 1: Let a network have traffic input set r and routing
variables φ, and let each marginal utility U ′

i(pi) be continuous
in pi, i ∈ N . Then we have the following:

• the set in (7) i �= j has a unique solution for ∂U/∂ri(j);
• both ∂U/∂ri(j) and ∂U/∂φik(j) (i �= j, (i, k) ∈ L) are

continuous in r and φ.
Now we proceed to show the necessary and sufficient condi-

tions for the optimal solution of the maximum lifetime routing
problem. Recall that the maximum network lifetime routing
problem is to route the traffic so that the network lifetime
can be maximized for a given traffic input. Here, the solution
space ψ consists of all the possible routing variable sets φ. The
conditions for φ to be an optimal solution of the maximum
lifetime routing problem are given in Theorem 2.

Theorem 2: Assume that Ui is concave and continuously
differentiable for pi ∀i. U is maximized if and only if for ∀i,
j ∈ N

∂U

∂ri(j)

{
= δik(j), if φik > 0
≥ δik(j), if φik = 0 . (9)

Theorem 2 states that the aggregate utility is maximized if at
any node i, for a given commodity j, all links (i, k) that have
any portion of flow ti(j) routed through (φik(j) > 0) must
achieve the same marginal utility with respect to j, and that this
maximum marginal utility must be greater than or equal to the
marginal utilities of the links with no flow routed (φik(j) = 0).
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V. DISTRIBUTED ROUTING

A. Overview

By understanding the optimality conditions to maximum
lifetime routing, the design philosophy of our routing scheme
should now be clear. The algorithm works in an iterative fash-
ion. In each iteration, for each node i and a given commodity
j, i must incrementally decrease the fraction of traffic on link
(i, k) (by decreasing φik(j)) whose marginal utility δik(j) is
large, and do the reverse for those links whose marginal utility
is small, until the marginal utilities of all links carrying traffic
are equal. When this condition is met for all nodes and all
commodities, the entire system reaches the optimal point.

Therefore, for each node i, each iteration involves two steps,
namely, 1) the calculation of marginal utility U ′

ik for each
outgoing link (i, k) and each of its downstream neighbors k’s
marginal utility ∂U/∂rk(j); and 2) the adjustment of routing
variables φik(j) based on the values of U ′

ik and ∂U/∂rk(j).
We will elaborate them in details as follows.

Section V-B introduces how the calculation and update of
marginal utilitiesU ′

ik and ∂U/∂rk(j) are executed. Section V-C
discusses how to maintain loop-free routing. Section V-D
formally presents the algorithm, whose optimal property is
analyzed in Section V-E.

B. Calculation of Marginal Utilities

We first introduce how to calculate the link marginal utility
U ′

ik = pt
ikU

′
i(pi) + pr

kU
′
k(pk). Sending data over a wireless

link (i, k) requires power consumption of both sending node
i and receiving node k. Thus, the calculation of U ′

ik depends on
the cooperation of both nodes. Node i is responsible to calculate
the term pt

ikU
′
i(pi). U ′

i(pi) can be derived based on (6) if the
energy reserve Ei and power consumption rate pi are known.
Both values can be directly measured by node i. pt

ik can be
calculated based on (3) if the constants α, β, and m, and the
node distance dik, are known beforehand. Alternatively, node
i can directly estimate pt

ik by measuring the amount of data
sent from i to k and the corresponding power consumption.
Node k is responsible for calculate the term pr

kU
′
k(pk). U ′

k(pk)
can be calculated in the same way as U ′

i(pi). pr
k can be either

calculated based on (2), or directly estimated by measuring
the amount of data received at node k and the corresponding
power consumption. After calculation, k can send the value of
pr

kU
′
k(pk) to node i, which in turn acquires U ′

ik.
Now we see how each node i calculates its marginal utility

∂U/∂ri(j) with respect to commodity j. In order to do so,
based on (7), i needs to know δik(j) = U ′

ik + ∂U/∂rk(j), the
marginal utility of all its outgoing links regarding commodity
j. We have just discussed how to calculate U ′

ik, and ∂U/∂rk(j)
is the marginal utility of i’s downstream neighbor k. Now it
is clear that ∂U/∂ri(j) should be calculated in a recursive
way. Starting from node j, the recipient of commodity j,
∂U/∂rj(j) = 0 based on the definition. j then sends the values
of ∂U/∂rj(j) and pr

jU
′
j(pj) to its upstream neighbor, say k.

Upon receiving the updates, node k can calculate U ′
ik as de-

scribed above, then acquire ∂U/∂rk(j). Then, k repeats the
same procedure to its upstream neighbor until node i is reached.

Fig. 2. Illustration of improper link.

C. Loop-Free Routing

From the above calculation, we can see that among all nodes
carrying traffic of commodity j, their marginal utilities follow
a partial ordering. The recipient node of commodity j has the
highest marginal utility, which is 0. Its upstream neighbors have
lower marginal utilities,3 whose own upstream neighbors have
even lower marginal utilities. Therefore, the recursive proce-
dure of node marginal utility calculation is free of deadlock if
and only if such a partial ordering is maintained, i.e., the routing
variable set φ is loop free.

In order to achieve loop-free routing, for each node i, with
respect to commodity j, we introduce a set Bi,φ(j) of blocked
nodes k for which φik(j) = 0 and the algorithm is not permitted
to increase φik(j) from 0. k ∈ Bi,φ(j) if one of the following
conditions is met.

1) (i, k) �∈ L, i.e., k is not a neighbor of i.
2) φik = 0 and ∂U/∂ri(j) ≥ ∂U/∂rk(j), i.e., the marginal

utility of k is already greater than or equal to the marginal
utility of i.

3) φik = 0 and ∃(l,m) ∈ L such that (a) l = k or l is down-
stream of k with respect to commodity j; (b) φlm(j) > 0
and ∂U/∂rl(j) ≥ ∂U/∂rm(j), i.e., (l,m) is an im-
proper link.

An example illustrating an improper link is shown in Fig. 2.
The solid line indicates that there is traffic on this link, and the
dotted line indicates otherwise. Here, node 4 is the destination,
and all the other nodes have input traffic destined to 4. The
partial ordering of their marginal utilities are 1 → 2 → 3 → 4,
where the marginality of node 4 is the highest. However, the
traffic from node 3 to node 1 flows against such partial ordering
(node 3 has a higher marginal utility than node 1). Node 2, if
unaware of the existence of such an improper link downstream,
might make a loop by moving some of its outgoing traffic to
node 3. To prevent this case from happening, node 3 only needs
to raise a flag when updating its marginal utility to its upstream
nodes 1 and 2. Upon receiving such a notification, nodes 1 and
2 can include node 3 into their blocking sets.

D. Algorithm

Now we are ready to formalize our algorithm. We use φ(k)

to represent the routing variable set at the iteration k. ∆φ(k)

represents the changes made to φ(k) during the iteration k.

3Given the definition of marginal utility in (7), its value is nonpositive.
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Apparently, φ(k+1) = φ(k) + ∆φ(k). Also, for node i, we have
the following.

• φi(j) = (φi1(j), . . . , φim(j))T is the vector of its routing
variable regarding commodity j.

• ∆φi(j) = (∆φi1(j), . . . ,∆φim(j))T is the vector of
changes to φi(j).

• δi(j) = (δi1(j), . . . , δim(j))T is the vector of marginal
utilities of all i’s neighbors.

At iteration k, node i operates according to the following steps.

1) Calculate the link marginal utility U ′
ik for each of its go-

ing links (i, k), get updates of marginal utility ∂U/∂rk(j)
from each of its downstream neighbors k, and then calcu-
late δik(j) = U ′

ik + ∂U/∂rk(j).
2) Calculate its own marginal utility ∂U/∂ri(j) according

to (7) and send it to all its upstream neighbors.
3) Calculate ∆φ

(k)
i (j) as

∆φ(k)
il (j)

=



−min

{
φ

(k)
il (j), ρ(δil(j)−δmin(j))

ti(j)

}
, δil(j) �= δmin(j)

∑
δim(j) �=δmin(j) ∆φ(k)

im (j), δil(j) = δmin(j)

where δmin(j) = minm �∈B
i,φ(k)(j)

δim(j), and ρ > 0 is
some positive stepsize.

4) Adjust routing variables

φ
(k+1)
i (j) = φ

(k)
i (j) + ∆φ(k)

i (j), ∀i ∈ N − {j}.

E. Analysis

The following lemma shows some of the properties of our
algorithm.

Lemma 2:

1) If φ(k)(j) is loop free, then φ(k+1)(j) is loop free.
2) If φ(k)(j) is loop free and ∆φ(k)(j) = 0 solves the

problem defined in step (3) of the algorithm, then φ(k)(j)
is optimal.

3) If φ(k)(j) is optimal, then φ(k+1)(j) is also optimal.
4) If ∆φ(k)(j) �= 0 for some i for which ti(j) > 0, then

U
(
φ(k)(j) + ∆φ(k)(j)

)
> U

(
φ(k)(j)

)
.

The following theorem shows the main convergence result.
Theorem 3: Let the initial routing φ(0) be loop free and

satisfy U(φ(0)) ≥ U0, where U0 is some scalar, then

U
(
φ(k+1)(j)

)
≥ U

(
φ(k)(j)

)
lim
k→∞

U
(
φ(k+1)(j)

)
= min

φ(j)∈Φ(j)
U (φ(j)) .

Furthermore, every limit point of {φ(k)} is an optimal solu-
tion to the problem defined in step (3) of the algorithm.

VI. SIMULATION STUDIES

A. Simulation Setup

We evaluate the performance of our routing algorithm via
simulation in this section. Our simulation setting is as follows.
We randomly create 100 nodes on a 100 × 100 m2 square.
The maximum transmission range of each node is 25 m. In
our simulation, we set α = 50 nJ/b, β = 0.0013 pJ/b/m4, and
m = 4 for the power consumption model. The energy reserve
on each node is 50 kJ.

We study two types of networking scenarios, namely,
1) sensor network and 2) ad hoc network. In the scenario of
sensor network, a node is picked as the base station (data sink),
while a subset of other nodes act as data sources sending traffic
to the sink at 0.5 kb/s. The rest of the nodes act as relaying
nodes. In the scenario of ad hoc network, we randomly create
several pairs of unicast connections. Besides the senders and
receivers of these unicast pairs, other nodes are responsible to
relay traffic. The sending rate of each connection is 0.5 kb/s.
We run each simulation over 20 different random topologies.
For example, when evaluating the network lifetime of the
sensor network scenario with 40 sensors, we create 20 different
100-node topologies and pick 40 nodes as data sources. We run
algorithms on each of them and then show the average result.

We compare the performance of following algorithms. The
MinEnergy algorithm tries to minimize the energy consumption
for each data unit routed through the network. For each data
source, the algorithm finds its shortest path to the destination
in terms of energy cost. The route for each data source is
fixed throughout the entire network lifetime. The MaxLife
algorithm tries to maximize the network lifetime, which can
be implemented in centralized or distributed fashions. The
centralized algorithm derives the maximum lifetime by solving
the linear programming problem. The distributed algorithm is
the one presented in Section V. As mentioned in Section III,
our distributed algorithm can only converge to near-optimal
routing unless γ → ∞. So we also evaluate the performance
of our algorithm when γ takes different values.

B. Network Lifetime

Fig. 3(a) shows the lifetime of the same sensor network when
the data are routed by different algorithms under the single-sink
setting. We observe that the maximum lifetime of the network
drops at a super-linear speed as the number of data sources
increases, mainly as a result of increased traffic demand in a
network with fixed overall energy reserve. It also shows that the
optimal (centralized) MaxLife algorithm consistently maintains
the network lifetime at least five times the same result returned
by the MinEnergy algorithm. Also, the performance of our
distributed algorithm is able to approximate the performance of
the optimal algorithm by an average of 80% when γ = 3. When
γ = 4, the average approximation ratio increases to 95%.

From Fig. 3(b), we have the same observations except that
in the scenario of ad hoc network our algorithm outperforms
the MinEnergy algorithm by only three times. This is mainly
due to the different traffic patterns of two networking scenarios.
In the sensor network scenario, the MinEnergy algorithm ends
up with a shortest-path data aggregation tree, where the entire
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Fig. 3. Network lifetime. (a) Sensor network. (b) Ad hoc network.

traffic concentrated on a few nodes located close to the data
sink. The energy reserve of these nodes can easily run out soon,
which is the main reason for the inferior performance of this
algorithm. The same traffic concentration problem exists in an
ad hoc network scenario, but not as serious as the previous
case. In contrast, in both networking scenarios, our algorithm
is able to effectively diverge the traffic, hence the energy
consumption, among all nodes, that significantly prolongs the
network lifetime.

C. Energy Cost

On the other hand, our algorithm consumes more system
energy than the MinEnergy algorithm for an average bit of
data routed through the network. The reason is that, in order
to maximally utilize the energy reserve of all nodes within the
network, sometimes the data from a source have to go through
some route whose energy consumption rate is not as efficient
as the one returned by the MinEnergy algorithm. As shown in
Fig. 4, such an inefficiency is bounded by a factor of 2 under
various simulation settings.

D. Distribution of Energy Consumption

The distinction of the two algorithms’ energy consumption
pattern is further exhibited in Fig. 5, which plots the distribution

Fig. 4. Average energy cost. (a) Sensor network. (b) Ad hoc network.

of the energy consumption ratio of each node in the network
throughout the entire lifetime. In both networking scenarios,
50 out of 100 nodes send traffic. For the MinEnergy algorithm,
the distribution is highly asymmetric. Under both networking
scenarios, only a few “hot spot” nodes completely utilize their
energy reserves, while about 40% of the nodes do not consume
any energy at all since they are not included as data re-
laying nodes.

On the other hand, in the result of our algorithm, most nodes
get to contribute about 60% of its energy reserve since in our
algorithm each node always tends to allocate more traffic via
the node with the maximum marginal utility, i.e., the node with
the least power consumption ratio. Thus, our algorithm is able
to sustain a much longer system lifetime at the price of more
energy consumption per bit than the MinEnergy algorithm.

VII. RELATED WORKS

Besides work on energy-efficient routing algorithms as we
have discussed in Section I, there are other research efforts to
address the constrained-energy problem in wireless networks.

Some works explore the performance limits of energy-
constrained wireless networks. In particular, Hu and Li [28]
study the energy-constrained fundamental limits with respect to
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Fig. 5. Energy consumption distribution. (a) Sensor network (50 data
sources). (b) Ad hoc network (25 unicast pairs).

network throughput and lifetime in wireless sensor networks.
They give asymptotic analytical results on the relationship
between network lifetime and the number of nodes with fixed
node density. Zhang and Hou [24] derive the necessary and
sufficient conditions of the node density in order to maintain
k-coverage and the upper bound of network lifetime when only
an α portion of a region is required to be covered, given a fixed
node density in this finite region. Our work is different from
these works in that we study how to achieve the upper bound
of network lifetime via distributed routing instead of exploring
what is this upper bound.

Hou et al. [29] study the problem of rate allocation with
the requirement of network lifetime. The work in [30] also
presents a rate allocation algorithm based on traffic splits in
ad hoc networks. Our algorithm addresses a different problem
from these works and may fit in different network operation
environments. In particular, in our problem, the traffic demands
from all sensors are fixed and known a priori. This problem
well models the application scenarios, such as temperature,
pressure, and noise level monitoring, where a fixed amount
of information is generated at a fixed interval. Our goal is
to maximize the network lifetime while satisfying the rate

demands instead of allocating rates to different wireless nodes
such that certain fairness criteria are satisfied.

The presented distributed routing algorithm in this paper is
similar to the works in [21] and [22] in that both algorithms
explore the marginal utility (delay in their cases) to achieve the
optimum in a distributed way. Yet this work studies a different
network problem than these previous works. First, the goal of
this work is to maximize the network lifetime, while the works
in [21] and [22] are to minimize the aggregate delay of the
network. Second, this work studies wireless nodes with energy
constraint, while they study wireline links that incur delay when
overloaded.

VIII. CONCLUSION

This paper studies the problem of distributed maximum net-
work lifetime routing for a multihop wireless network. Inspired
by the max–min fair resource allocation, this paper presents
a novel utility-based nonlinear formulation of this problem.
Based on this formulation, this paper further presents a dis-
tributed routing algorithm that achieves the goal of maximizing
network lifetime. The presented algorithm has a solid nonlinear
optimization theoretical background and is shown to be effec-
tive and efficient under various simulation environments.
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